
Bridging the Gap Between LLMs and LNS with
Dynamic Data Format and Architecture Codesign

Pouya Haghi∗, Chunshu Wu∗, Zahra Azad∗, Yanfei Li†, Andrew Gui†, Yuchen Hao‡, Ang Li†, Tony (Tong) Geng∗

∗University of Rochester, Rochester, NY
†Pacific Northwest National Laboratory, Richland, WA

‡Meta, Menlo Park, CA
∗{phaghi, cwu88, zazad, tgeng}@ur.rochester.edu, †{yanfei.li, andrew.gui, ang.li}@pnnl.gov, ‡haoyc@meta.com

Abstract—Deep Neural Networks (DNNs) have achieved
tremendous success in the past few years. However, their training
and inference demand exceptional computational and memory
resources. Quantization has been shown as an effective approach
to mitigate the cost, with the mainstream data types reduced
from FP32 to FP16/BF16 and recently FP4 in the latest NVIDIA
B100 GPUs. With increasingly aggressive quantization, however,
the conventional floating-point formats suffer from limited pre-
cision in representing numbers around zero. Recently, NVIDIA
demonstrated the potential of using a Logarithmic Number
System (LNS) for the next generation of tensor cores. While
LNS mitigates the hurdles in representing small numbers, in this
work we observed a mismatch between LNS and the emerging
Large Language Models (LLM), where LLM exhibits significant
outliers when directly adopting the LNS format.

In this paper, we present a data-format/architecture codesign
to bright this gap. On the format side, we propose a dynamic
LNS format to flexibly represent outliers at a higher precision, by
exploiting asymmetry in the LNS representation and identifying
outliers through a per-block basis. On the architecture side,
for demonstration, we realize the dynamic LNS format in a
systolic array, which can handle the irregularity of the outliers at
runtime. We implement our approach on an Alveo U280 FPGA
as a prototype. Experimental results show that our design can
effectively handle the outliers and resolve the mismatch between
LNS and LLM, contributing to an accuracy improvement of
15.4% and 16% over the floating-point and the original LNS
baselines, with up to 15.3% over the state-of-the-art quantization
methods using four LLM models. Our observation and design
lay a solid foundation for the large-scale adoption of the LNS
format in the next-generation deep learning hardware.

Index Terms—Large Language Models, Logarithmic Number
System, Quantization, Machine Learning Accelerator.

I. INTRODUCTION

Deep learning, especially Deep Neural Networks (DNNs)
and Large Language Models (LLMs), demand substantial time
and computational resources for training and deployment. For
instance, the computational requirement of training a GPT-3
model [1] is several hundreds of Zetta FLOPS. Consequently,
the training and inference of these large models are typically
performed on GPUs and accelerators. However, the compu-
tational and memory requirements of these models (750×
and 400× per two years) significantly outpace the hardware
progress (1.6-3× per two years) [16].

Quantization has been shown as an effective technique to re-
duce both the memory and computational costs for improving

(a) (b)

Values
0.01 0.1

Fig. 1. (a) Distribution of FP8 vs LNS8 from [-1,1] (LNS8 has more
quantization bins around zero). (b) Outlier comparison of a DNN model
(ResNet-18) and two LLMs (LLaMA2 and LLaMA3). The Y-axis shows the
maximum value of a tensor normalized by σ (standard deviation). The X-
axis is the tensor ID sorted by maximum σ. LLMs have outliers substantially
larger than DNNs (two orders of magnitude). The green dashed line represents
the maximum number of LNS8 distributions normalized by σ. There is a
mismatch between LLM’s outlier requirements and LNS.

performance [9], [12], [23], [48], [49]. For instance, NVIDIA
has supported FP16 and BF16 formats [19] in their A100
GPUs. FP8 (8-bit floating-point) [26] support was later added
to the tensor cores of the H100 GPUs, and the new Black-
well architecture now supports FP4. While quantization is a
promising approach, it often hurts the accuracy in low-bitwidth
settings [9]. This is especially the case when representing
numbers around zero, as the distribution of FP numbers is
not well-matching the distribution of DNN weights and inputs
in the small-value region.

Recently, NVIDIA unveiled the potential of using a Loga-
rithmic Number System (LNS) for DNN training and inference
under low bit-width settings [56]. LNS exploits the properties
of logarithms to efficiently perform arithmetic operations. It
has been shown that LNS offers superior error characteris-
tics compared to floating-point arithmetic [4], [30], as the
LNS number distribution demonstrates a better matching to
the DNN inputs and weights in the small-value region, as
compared to their FP counterparts. Fig. 1 (a) shows that
LNS contains more quantization bins around zero than FP.
Another major benefit of LNS is that it requires substantially
cheaper hardware than FP for multiplications. This is because
multiplications are converted to additions in the logarithm
domain. While additions can be more expensive in LNS, it
is possible to achieve low cost in hardware through careful
approximations [56].

Fig. 2. Overview of LNS-LLM with two pillars: data format and architecture.
It is fully explained in Sec. IV.

While the ef�cacy of LNS has been demonstrated in DNN
training [56] and inference [20], [27], their applicability to
emerging LLMs is still unclear. In this work, we show that
LLMs exhibit unique characteristics in their distribution from
ordinary DNNs. A major difference is that LLMs have sig-
ni�cantly more and larger outliers in their distributions, see
the long tails in Fig. 1 (b). These large numbers, as shown by
existing works [8], [9], [18], greatly impact the �nal accuracy
of the LLMs. Given that LNS distributes even more numbers
to the small-value region around zero, there are fewer bins for
large numbers to represent outliers in LNS format and this
causes large errors with outliers. Consequently, if adopting
LNS for the next-generation AI/ML hardware [6], we risk
considerable accuracy degradation when using them for LLMs.

To address this observed mismatch, LNS needs to be
adjusted to represent outliers more precisely. Thus, we propose
a dynamic LNS format to �exibly represent outliers at a higher
precision while keeping non-outliers at lower precision. We
observe that some quantization bins in LNS format remain
unused due to the asymmetry of representing numbers in the
logarithm domain, especially for larger bitwidths. We leverage
this property to increase the precision of outliers with minimal
additional bits. Furthermore, outliers are identi�ed on a per-
block basis in our format to boost accuracy.

The proposed LNS format needs architecture support, but
designing such hardware is challenging and can bring ad-
ditional complexities due to the mixed-precision format and
the irregularity of outliers. Therefore, on the architecture
side, we proposedynamic LNS multiplicationand addition
modules to handle the mixed-precision format with minimal
hardware cost. We extend a systolic array architecture with
these modules. In addition, we design an adaptive scheduler
that schedules operations with different precisions at different
speeds to handle outliers' irregularity at runtime. This prevents
bubbles in the pipeline and improves the performance. Finally,
we propose a novel data�ow that reorders operations to enable

a per-block outlier criterion.
To support both our data format and architecture, we

propose a hardware/software codesign framework called LNS-
LLM. It accelerates LLM inference with a �ne-grained outlier-
aware LNS data format at low precision. In this work, we
implement LNS-LLM on an Alveo U280 FPGA as a prototype
but our approach is applicable to tensor cores as well. LNS-
LLM reduces the precision requirement and achieves superior
accuracy and performance compared to the state-of-the-art.
Fig. 2 summarizes the overview of this work.

This paper makes the following contributions:

� We explore the challenges of using LNS in LLMs and
discuss how to enhance LNS to address these challenges.

� We propose a novel low-overhead LNS format that repre-
sents outliers with increased precision to overcome LLM
accuracy degradation.

� We propose a novel architecture with dynamic processing
elements to support our data format in mixed precision
with minimal overhead. Our architecture also handles
outliers' irregularity at runtime through a scoreboard and
an adaptive scheduler.

� Experimental results show that LNS-LLM achieves an
accuracy improvement of 10.5% (15.4%) and 10.1%
(16.0%) over the �oating-point and the original LNS
baselines at 8 bits with E4M3 (4 bits) with up to 15.3%
over the state-of-the-art quantization methods using four
LLM models. Our approach also provides an average
of 4.5� speedup compared to the existing outlier-aware
accelerators.

II. BACKGROUND

We �rst provide a brief background on the logarithmic
number system. LNS has the following representation:

x = (� 1)S � 2L x (1)

where L x represents the number in LNS format and S is
the sign bit. Here we assumed the base is 2 but it can be
chosen arbitrarily (usually a power-of-two number). One major
distinction compared to �oating-point is that the exponent
(L x) is a fractional number. In this paper, we assume that
L x contains� integer bits and� fractional bits.

A key bene�t is that multiplication in LNS is cheap and
hardware-friendly. In other words, it turns into an addition in
LNS domain. Considera andb are in real domain (a; b2 R)
and f Sa ; L ag and f Sb; L bg are their LNS counterpart. Then:

P = log2(a � b) = log2(a) + log2(b) = L a + L b (2)

whereSP = Sa � Sb. While multiplication in LNS is easy to
compute, addition is expensive as it requires �rst converting
the number from logarithm format to �xed-point format and
then performing addition. However, it is possible to reduce
the complexity by exponent decomposition and conversion
approximation [56]. We follow the same approach as [56] for
LNS arithmetic operations.

III. M OTIVATION

In this section, we �rst discuss some quantization challenges
of LLMs that make them distinct from other models (e.g.,
DNNs). Next, we outline the salient features that the proposed
LNS-LLM approach should possess to tackle challenges re-
lated to LLMs at data format and architecture levels.

A. Quantization Challenges of LLMs

Two important challenges of LLM quantization are:
Long-tail distribution: LLMs have distributions with

longer tails than DNNs, where the outliers in LLMs are farther
from the mean compared to those in DNNs. This was shown in
Fig. 1 (b) for an LLM example (LLaMA2) and a DNN instance
(ResNet-18). This phenomenon happens for both activations
and weights. It poses a challenge in quantizing LLMs since the
quantization bins are inef�ciently utilized with few numbers
in some quantization bins [10], which highlights the necessity
for more dynamic quantization schemes. More importantly,
previous studies demonstrate that these outliers contribute the
most to the �nal accuracy [8].

Per-channel quantization:As the problem of outliers is not
signi�cant in DNNs it is customary to quantize the whole ten-
sors independently (per-tensorquantization). However, LLMs
require higher precision due to the existence of outliers. Prior
work suggests usingper-vectorquantization [49]. To clarify
this, Fig. 3 shows the distribution of an LLaMA2 layer for
both activations and weights. As can be seen from the pattern
of distribution in Fig. 3 (a), numbers in the same channel
belong to the same range. It means that per-channel (column-
wise1) quantization for activations enjoys less quantization
error. However, this approach does not map well to the
current GPU's tensor cores (MMA operations [28]) as they
do not tolerate the insertion of other instructions with lower
throughput [48]. Thus, many works employ per-token quanti-
zation (row-wise), which provides nearly the same accuracy as
conventional per-tensor quantization. We note that per-channel
quantization has been studied for LLMs, but effective solutions
at the hardware level (GPUs or accelerators) have not been
presented yet. Finally, LLM weights have around the same
variation in both axes (Fig. 3 (b)). This gives freedom for
choosing the data�ow in weights (Sec. IV-B).

B. Is LNS a good �t for LLMs?

Let's explore whether LNS is a suitable match for LLMs.
To this end, we conduct an experiment to evaluate the absolute
error of a multiply-accumulate (MAC) operation (a � x + b)
for both LNS and �oating-point with respect to different input
(a, x, andb) ranges in low precision (8 bits). This is shown
in Fig. 4 (a). As we can see, LNS yields asmaller average
error compared to �oating-point. Our analysis indicates that
the average bene�t of LNS is equivalent to approximately1=4
bit of �oating-point precision2. Yet, the drawback lies in the

1In LLMs, channels and tokens correspond to the columns and rows of
tensors, respectively.

2In other words, 8-bit LNS is equivalent to 8.25-bit �oating-point in terms
of average error.

Fig. 3. (a) Activation and (b) weight distribution of a LLaMA2 layer.
For activations, channel-wise quantization exhibits a small variance, whereas
token-wise quantization shows a larger variance. The Pile dataset is used.

inadequacy of LNS when handling exceptionally large outliers,
where precision plays a critical role for LLMs.

Another observation is that there is anasymmetry in repre-
senting numbers in the LNS domain. In fact, many quantiza-
tion bins (on the positive side) are not used as the maximum
number in the tensor is much smaller than the maximum
achievable number in LNS format. This is demonstrated in
Fig. 4 (b) where it shows the range of numbers in LNS format
(logarithm domain) for the activations and weights of the �rst
and last linear layer in an LLaMA2 model. The number of bits
for integer and fraction is 4 and 3, respectively, for LNS8.

Fig. 4. (a) Absolute error for different input ranges in a signed MAC
operation. The number of bits for the integer part (4 bits) in LNS8 is chosen
so that it has the same dynamic range as FP8. (b) Range of numbers in LNS
format (logarithm scale) for the activations and weights of the �rst and last
linear layer in an LLaMA2 model. Many quantization bins (on the positive
side) are not used.

C. Proposed LNS-LLM Approach

Our approach tackles the obstacles posed by LLMs and
addresses the inef�ciencies in LNS on two levels: data format
and architecture. We summarize our objectives for each level.

1) Data Format: To solve LLM challenges, we propose a
dynamic outlier-aware LNS format. The proposed data format
should exhibit the following properties. Firstly, the proposed
data format should be mixed-precision due to the existence of
outliers: low-precision for non-outliers and high-precision for
outliers. Secondly, outlier identi�cation ought to be accom-
plished on a per-block basis to boost LLM accuracy. Thirdly,
the data format should minimize the unused quantization bins.

2) Architecture: Our format needs architectural support.
We extend a systolic array architecture as it provides high
performance for machine learning workloads [17], [36]. These

are our objectives at the architecture level: �rst, an appropriate
data�ow is required for the architecture to map the sequence of
operations to processing elements in the correct order. Accord-
ing to our observation in Fig. 3, a column-�rst order for the
activation tensors is required to enable per-block quantization
in the proper direction (channels). Next, the systolic array
needs to be equipped with processing elements capable of our
dynamic format. Lastly, the proposed architecture shall handle
the irregularity of outliers ef�ciently at runtime since outliers
can occur at any block index.

IV. LNS-LLM

In this section, we �rst present our proposed data format.
Next, we disclose the details of our data�ow to map operations
in the correct order to the systolic array. Subsequently, we
introduce our architecture to support dynamic LNS. Last but
not least, the LNS-LLM framework is discussed.

A. Data Format

As was discussed in Sec. III-B, LNS suffers from large
errors in representing and processing outliers, which are
crucial for the accuracy of LLMs. Thus, we propose a two-
level outlier-aware data format that employs two orthogonal
techniques to improve the precision of outliers We �rst de-
scribe the two techniques. Then, we characterize outliers into
three categories. Finally, we propose our two-level outlier-
aware LNS format and provide algorithms for en/decoding
and arithmetic operations. We note that this format works for
both per-vector (channel/token) and per-tensor quantization
schemes. Obviously, per-vector quantization provides better
accuracy as outliers are identi�ed on a more �ne-grained basis.
From here, we assume a per-channel quantization.

Before delving into the data format, let us de�ne the
following terminology. A ”block” is a generalized term to
denote a certain number (k) of adjacent elements in a tensor,
similar to [5], [7]. In our work, this will be a column vector of
activation tensors and a row vector of weight tensors. We use
block and vector interchangeably. ”Prime blocks” are those
few blocks that are the most sensitive to quantization error.
To simplify calculations, we assume a prime block is a block
that have at least one element larger than a thresholdTE.

1) Techniques:We discuss two orthogonal techniques to
increase the precision of outliers.

Quantization Bin Relocation (QBR): As we discussed
before, LNS quantization bins are not evenly utilized and some
are wasted. To make effective utilization of wasted bins we
map numbers larger than a thresholdTM (outliers) – where
the precision matters – to multiple consecutive unused bins.
These unused bins are grouped together providing room to
store additional precision for the outliers. Fig. 5 (a) depicts this
scenario for two vectors (assuming per-channel quantization).
We note that numbers are in the LNS domain. The orange
vector has a maximum of 2, which means that numbers
< 2; 16 > are not utilized. By grouping unused quantization
bins together with astepof 4 and mapping outliers to these
groups, one can store two additional fractional bits for outliers.

The green vector has a smaller maximum, which provides
a larger unused space to take advantage of this nonlinearity.
This, in turn, allows us to increase the precision of a wider
range of outliers by having a smallerTM . We emphasize that
the asymmetry of LNS format is leveraged for accommodating
more bitswithout increasing bitwidth.

It is worth mentioning that while it is feasible to solve
the asymmetry in LNS by adding an offset and increasing
the precision of all numbers in the distribution, we instead
increase the precision of outliers by a larger amount leaving
non-outliers in low precision. This is because outliers are more
critical to the �nal accuracy.

Bit Unpacking (BU): In this technique, we directly increase
the bitwidth for outliers. This technique is driven by the
observation that there are few channels (prime blocks) in
the activation tensors that hold large outliers and elements
in each channel have the same range [9] (see Fig. 3). After
identifying prime blocks, all the elements in that block are
represented and processed with higher precision. This is done
by unpacking bits from a large bitvector with low-precision
into another bitvector with high-precision at the cost of slightly
decreasing throughput. For example, a block of four elements
in 8 bits can be unpacked to three elements in 10 bits. Details
will be discussed in Sec. IV-B. We call it the bit unpacking
technique to emphasize that the memory access is stillaligned
(as opposed to [31]) and bits are internally unpacked.

Fig. 5. (a) Illustration of how to map vanilla LNS (X) to the proposed
data format (Y) for two vectors using the QBR technique. The unused
quantization bins (grey boxes) are used to make room for outliers (purple
boxes). This is an example of per-channel quantization. (b) The proposed
LNS format and representation for different types of outliers. Precision is
increased dynamically depending on the type of outlier.S, I , andF denote
sign, integer, and fractional bits.

2) Characterizing Outliers:Given that the two aforemen-
tioned techniques can be applied independently, adopting them
creates different tiers of outliers. We divide them as below:

Extreme Outliers: These are outliers that belong to a
prime blocks and their values are larger than a thresholdTM
(TM < TE). These need the highest amount of precision.
Thus, both QBR and BU techniques are utilized. This increases
their precision by� and bits, respectively.Techniques used:
QBR and BU.

Moderate Outliers: These are outliers that do not belong
to a prime block and their values are larger thanTM . Their
precision is increased by� bits compared to non-outliers.
Technique used:QBR.

Derived Outliers: These belong to a prime block but
their values are smaller thanTM . They are not outliers on
their own, rather they derive this property from peers in the
same prime block to reduce computational complexity. Their
precision is increased by bits compared to non-outliers.
Technique used:BU.

This taxonomy helps us to better illustrate the proposed
data format in the rest of this section. We note that� , ,
and thresholds are con�gurable so that if QBR becomes less
effective, especially in the ultra low-bit regime, such as 4 bits,
 can be increased orTE reduced.

3) Dynamic LNS format:The proposed LNS format seeks
to increase the precision of outliers. We achieve this goal with
the aid of QBR and BU techniques. These provide more room
to hold extra precision bits. This two-level format is depicted
in Fig. 5 (b) for non-outliers and different tiers of outliers.
We call it a dynamic LNS format as it dynamically represents
outliers with a higher precision at runtime.

We describe how the data format increases the precision of
outliers. SupposeI (:) and F (:) denote functions that extract
the integer and fraction part of a number, respectively, and
f :g indicates bit concatenating. Also, assume thatX and Y
are the input LNS number and the encoded output number in
dynamic LNS format, respectively. Then, ifI (X) > TM we
have the following on the �rst level:

I (Y) = f (I (X) � TM) � step; F(L1)g + of fset (3)

whereF (L1) represents� (= log2(step)) additional precision
bits that the QBR technique provides. Moreover, ifX belongs
to a prime block, on the second level we have:

F (Y) = f F (X); F (L2)g (4)

where andF (L2) represents additional precision bits that
the BU technique provides. If both conditions become true,
then + � additional fractional bits are achieved.

4) En/Decoding: Now, we discuss in detail the encoding
(decoding) process from vanilla LNS (proposed LNS) to the
proposed LNS (vanilla LNS). Algo. 1 shows this conversion.
In this algorithm,[:] denotes bit selection. For instance,[: �]
represents bits from position zero till� � 1. Here, the position
is numbered from the closest bit to the decimal point (position
zero is the bit with a value of20 and 2� 1 for integer and
fractional parts, respectively). Conversely,[� :] indicates bits
from position � to the last position. We note thatof fset is
calculated as the maximum of a block.

As can be seen from the algorithm, only additions, compar-
isons, and bit shuf�ing are needed for encoding and decoding.
This shows that the proposed LNS format is hardware-friendly.
To get the most ef�cient hardware for computing maximum
in the Encoder part, data�ow needs to match with the
quantization scheme (column-wise for activation).

Algorithm 1: Proposed LNS en/decoding algorithm

Function Encoder(D) :
I = int (D); F = frac (D); S = sign (D); o = of fset ,
o = ceil (Max (D)) ; T M = o � (2� � 1 � o) >> �
if D is a prime block then

if I � T M then
E = f S; o + f (I � T M) << �; F [� + :

� + + �]g; F [: � +]g
// Extreme Outlier

else
E = f S; I; F [: � +])g

// Derived Outlier
end

else
if I � T M then

E = f S; o+ f (I � T M) << �; F [� : � + �]g; F [: �]g
// Moderate Outlier

else
E = f S; I; F [: �]g // Non-Outlier

end
end
return E; T M; o

Function Decoder(E; T M; of fset) :
I = int (E); F = frac (E); S = sign (E); o = of fset
if E is a prime block then

if I � T M then
D = f S; (I � o) >> � + T M; F [: � +]; I [: �]g

// Extreme Outlier
else

D = f S; I; F [: � +]g
// Derived Outlier

end
else

if I � T M then
D = f S; (I � o) >> � + T M; F [: �]; I [: �]g

// Moderate Outlier
else

D = f S; I; F [: �]g // Non-Outlier

end
end
return D

Comparison with prior data formats: We compare dy-
namic LNS with other two-level block data formats. This is
shown in Tab. I. Other works [5], [7], [34] use quantization
parameters such as scaling factors to scale the numbers for
fully utilizing the available range (the maximum number in
the block is mapped to the maximum achievable number
in the format). Although this helps to avoid under�ows but
instead produces a large absolute error (even larger than the
initial error) for outliers as there are fewer quantization bins
for large numbers in formats like �oating-point and LNS. In
other words, they do not resolve the problem of outliers. On
the other hand, our approach utilizes quantization parameters
(threshold and offset) to improve the precision of outliers. It
is bene�cial for both small and large numbers as� is initially
chosen large enough to prevent under�ows. Then, the precision
of large numbers is increased using a dynamic threshold.
We note that dynamic LNS is a general-purpose format. It
allows for (1) adjusting the quantization parameters if there
are enough unutilized bins, (2) increasing� to create more

TABLE I
DYNAMIC LNS COMPARISON WITH OTHER BLOCK FORMATS
Data Format VS-Quant [5] Microexponent [7] Dynamic LNS

Level 1
Parameter(s)

scaling factor
(FP32)

scaling factor
(FP8 E8M0)

f threshold, offsetg
(INT5)

Level 2
Parameter(s)

scaling factor
(INT4)

scaling factor
(FP1 E1M0)

indicating prime
block (INT1)

k1 � 1K � 32 � 1K
k2 � 10 � 2 k1=k2

Bene�ts small numbers small numbers
both small &
large numbers

Increase
precision? 7 7 3

unutilized bins (which helps avoid under�ows) to leverage the
BU technique, or (3) simply not taking advantage of dynamism
(i.e., settingTM to a large value). Parameters are customizable
in this format to support non-LLM applications.

5) Arithmetic Operations: Now, we describe arithmetic
operations (multiplication and addition) using the proposed
LNS format. Similar to vanilla LNS, multiplication turns into
addition. Given that addition in LNS format incurs hardware
costs, our process involves decoding the number from dynamic
LNS to vanilla LNS, then converting it to a �xed-point format
(LNS2fx), and �nally performing the addition. To reduce the
size of LUT for LNS2fx, we decompose bits into faction and
integer parts where the lookup is only performed with the
fraction part while the integer part determines the amount to
be shifted after the lookup. To further reduce the overhead,
we use Mitchell's approximation where2x is approximated
as 1 + x if x is too small [56]. This way, the size of LUT
is again reduced by further decomposing the fraction part
(based on�) into MSBs and LSBs, and lookups are only
performed for the MSBs. Algo. 2 shows our approach. In this
algorithm, zero ext represents zero extension (adding zero
bits to fractional part) to align the bitwidths of two operands.
LUT is used for converting �xed-point to LNS or vice versa.

We added aLNS in (LNS out) variable for a generic
usage which represents whether the input/output is a vanilla
or a dynamic LNS number. Since we focus on multiply-
accumulate (MAC) operations, multiplications and additions
are fused together and some of the encoding/decoding opera-
tions will disappear. As it can be seen, a matrix multiplication
using operations in this algorithm is multiplication-free and it
involves only additions, lookup tables (LUTs), and shifting.

Algorithm 2: Multiplication/add on the proposed LNS
Function Multiplication(i 1; i 2) :

D 1 = zero ext (Decoder(i 1)) if (LNS in) elsei 1
D 2 = zero ext (Decoder(i 2)) if (LNS in) elsei 2
return Encoder(D1 + D2)if LNS out elseD1+D2

Function Addition(i 1; i 2) :
D 1 = zero ext (Decoder(i 1)) if (LNS in) elsei 1
D 2 = zero ext (Decoder(i 2)) if (LNS in) elsei 2
D 1 = LNS2fx(D 1) if i 1 is LNS elseD 1
D 2 = LNS2fx(D 2) if i 2 is LNS elseD 2
return Encoder(fx2LNS(D1 + D2))if LNS out elseD1+D2

Function LNS2fx(inp) :
I = int (inp); F = frac (inp)
return (

P � + � +
i = �;F [i]=1 (LUT (F [: �]) >> (i + 1)) + LUT (F [:

�])) << I
Function fx2LNS(inp) :

I = int (inp); F = frac (inp); S = sign (inp)
return concat(S; LUT (concat(I; F [: � + � +])))

B. Data�ow

As mentioned earlier, data�ow should adapt the proposed
data format to get the ef�cient hardware. We discuss our
design choices and introduce our proposed data�ow scheduling
and partitioning to adopt dynamic LNS and to meet the criteria
mentioned in Sec. III-C.

We follow a column-�rst order for activations to match
with per-channel quantization. However, input activations are
different from output activations; one should follow a row-�rst
order for input activations to achieve the latter. The question
is: ”which one is more important?”. On one hand, inputs
should be column-�rst order to leverage the BU technique
ef�ciently. On the other hand, a column-�rst ordering for
output activations is preferred to be able to calculate the
maximum of each column in the activation tensor (Algo. 1).
Our approach falls in the middle of these two extreme cases.
First, we follow column-wise access for only a number of
input activation elements (TR) as handling bit unpacking is
more critical to achieving higher throughput and reducing idle
cycles. Then, it is followed by a row-wise input activation
access all the way for the entire row to calculate the output
activations. Weights will take the opposite direction (row-wise
for TC elements and then column-wise for the entire column).
Indeed, our approach is based on calculating a tile of output
from a stream of outer-products (each time using two vectors
of sizeTR andTC). The next question is: ”whether to move
the output tile downward or to the right?”. In our proposed
data�ow we �rst move it downward and subsequently to the
right to achieve ef�cient memory access for the next layer's
activation assuming that the next layer is processed on the
accelerator as well. Fig. 6 depicts the scheduling of data�ow
for input/output activations and weights.

There is still another challenge. The bit unpacking technique
requires additional space. In our design, we group a number
of elements as a vector (V g, see Fig. 6) to better utilize
the memory and to improve the throughput. Then this vector
holds V LEN and f loor (V LEN � (� + � +1)

� + � +1+) elements in low-
precision and high-precision mode, respectively. VLEN is
considered as 4 (in 8-bit format). For instance, if we assume
 = 2 , it is possible to pack four 8-bit or three 10-bit
elements in 8-bit format. However, this creates an asymmetry
in the scheduling of data�ow as one needs to fetch more
vectors for the higher-precision data type. Instead of a �xed
scheduling which leads to idle cycles, we address this through
adaptive scheduling that retrieves vectors from prime blocks
more frequently than others. This is shown in Fig. 6. As an
example, PE(0,0) fetches four vectors from the prime block
(dark orange) and three vectors from the non-prime blocks
(light orange) in the activation matrix.

To achieve maximal data reuse with minimal communica-
tion, we partition the activation tensor in a row-wise manner
and each partition is mapped to different rows of our systolic
array architecture. Similarly, we partition vectorsV g within
each partition intoV LEN PEs in a row-wise fashion. Each
group of V LEN PEs is called a super PE or SPE in short.

Fig. 6. Scheduling of data�ow for input/output activations and weights. Order
is represented by the numbers with circles. Left: activation matrix, top-center:
weight matrix, right: tiled output matrix, bottom-center: PEs with scheduling
order. Rectangles in the activation/weight matrices represent each element.
Elements corresponding to prime blocks are represented with larger rectangles
and darker colors. The right side of the �gure shows the mapping to PEs with
the corresponding color from activation/weight matrices. To ef�ciently handle
mixed precision, data is packed differently for prime and non-prime blocks.
As an example of data fetching, vectors of (non)-prime blocks are fetched
(three) four times as shown in the bottom-center of the �gure.

The weight tensor is partitioned into columns and mapped
onto the columns of the systolic array. This ensures no inter-
PE communication with high data reuse. Data is partitioned
in a blocking manner among super PEs but interleaved across
PEs to ensure the correct partitioning for both low- and high-
precision modes. Fig. 6 shows the partitioning.

C. Architecture

At the architecture-level, we take advantage of a systolic
array design to achieve high data reuse. We extend it to support
the proposed data format. In this part, we �rst present our
overall architecture and then introduce our hardware design
for these dynamic operations.

1) Overall Architecture:The overall architecture of LNS-
LLM is depicted in Fig. 7. To support dynamic LNS format,
each PE in the systolic array is equipped with dynamic LNS
operations: dynamic multiplication and addition. To handle
mixed-precision format, the proposed architecture is equipped
with elastic buffers and an adaptive scheduler in place of a
�xed design which leads to bubbles in the pipeline (Sec. IV-B).
The former enables storing activation elements of either prime
or non-prime blocks ef�ciently in each entry (see red triangles
and blue circles in Fig. 7 that represent prime and non-prime
blocks, respectively). The latter maintains a set of counters
holding the number of iterations in a tiled matrix multiply
loop for both slow data�ow (prime blocks) and fast data�ow
(non-prime blocks). A scoreboard is used to handle outliers'
irregularity by determining whether activation blocks in the
current iteration are prime or not. Quantization parameters
are shared among SPEs to attain minimal overhead; vertical
SPEs share the same quantization parameters (Qparams) for
activations while horizontal SPEs share the same Qparams
for weights. In addition, it is worth mentioning that there
are running max modules bound to elastic output buffers
that keep track of maximums in output activation columns,

Fig. 7. Systolic array architecture with SPEs and elastic buffers. Non-prime
and prime block activation elements are represented with a circle and a
triangle, respectively.

which are useful for encoder functionalities (Algo. 1). We also
note that in this work we divide the entire architecture into
tiles to improve the timing. Finally, we utilize QBR and BU
techniques for activations, not weights, to reduce complexity.
Speci�cally, we perform per-block quantization for weights
without QBR and BU.

2) Dynamic Arithmetic Operations in LNS:Fig. 8 shows
the architecture of a super PE with orange and blue blocks
representing the components of a dynamic multiplier and a
dynamic adder, respectively. We take advantage of vector
additions and a Vector Register File (VRF) with an ef�cient
mechanism of handling mixed-precision data through packer
modules. Vector add is a wide uni�ed adder and it can
be able to perform concurrent additions if the inputs are
zero-padded appropriately to avoid carry propagation across
concurrent additions. When the input activation belongs to a
prime block (detected through the scoreboard's control signal),
the packer inserts zeros to separate three numbers, enabling
three simultaneous additions. Also, the VRF is comprised
of four independent banks. In the case of a prime block,
only three banks are accessed. A smart address generator
manages addresses to each bank as different banks might
require different addresses in this case (see red triangles in
Fig. 8 that are held in different addresses). On the other hand,
non-prime block elements all get the same VRF address (blue
circles). Encoder and decoder modules follow functionalities
described in Algo. 1.LNS2fxandfx2LNSmodules are further
broken down into components as shown in the �gure. Also,
it is evident that dynamic multiplication requires less logic
compared to dynamic addition.

D. LNS-LLM Framework

To reduce the effort for evaluating different LLM models
and quantization methods and to perform all the necessary
pre-processing and accelerator con�gurations, we propose a
framework for LNS-LLM. It is shown in Fig. 9.

For evaluating LNS-LLM on GPUs, �rst, an analyzer takes
the input model, a sample of the evaluation dataset, and
the desired data type. It then produces outputs including
the range of activation and weight tensors, their mean, and
� in the logarithm domain for each layer. Next, a decider
module decidesTE for each layer. We use the� rule for
selectingTE similar to work [18] (3� and 2� for 8- and 4-
bit data types, respectively). This information is then passed

	Introduction
	Background
	Motivation
	Quantization Challenges of LLMs
	Is LNS a good fit for LLMs?
	Proposed LNS-LLM Approach
	Data Format
	Architecture

	LNS-LLM
	Data Format
	Techniques
	Characterizing Outliers
	Dynamic LNS format
	En/Decoding
	Arithmetic Operations

	Dataflow
	Architecture
	Overall Architecture
	Dynamic Arithmetic Operations in LNS

	LNS-LLM Framework

	Experimental Results
	Experimental setup:
	Accuracy
	Performance
	Ablation Study
	Hardware Resource Usage and Energy Efficiency
	Outlier Identification Accuracy

	Related Work
	Conclusion
	Acknowledgments
	References

